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LETTER TO THE EDITOR 

Directed percolation: a finite-size renormalisation group 
approach 

Wolfgang Kinzelt and Julia M YeomansSg 
t Institut fur Festkorperforschung der Kernforschungsanlage Jiilich, 5 170 Jiilich, Postfach 
1913, West Germany 
$ Baker Laboratory, Cornell University, Ithaca, NY 14853, USA 

Received 11 February 1981 

Abstract. The finite-size renormalisation group technique introduced by Nightingale is 
applied to the directed percolation problem. The decay of correlations is anisotropic in fhis 
model and finite-size scaling is extended to treat such anisotropy. Precise estimates for 
critical exponents and percolation probabilities are obtained for site, bond and site-bond 
percolation on the square lattice with bonds directed along the positive axes. Both free 
boundary conditions, for which the results converge linearly with l / n  as n +CO, and helical 
boundary conditions, for which, unexpectedly, the results converge linearly with l /n3 ,  are 
considered. 

The percolation problem (see, for example, Stauffer (1979)), which describes lattices 
with sites or bonds present with probability p and absent with probability 1 - p ,  is of 
continuing interest. Directed (or oriented) percolation (Smythe and Wierman 1978) is, 
however, much less studied. The new feature which differentiates directed from 
ordinary percolation is a restriction on the direction of flow through the ‘open’ or 
‘occupied’ bonds: for example, the flow of water through a porous medium becomes a 
directed percolation problem if gravity is important. 

In this paper we study the critical properties of directed percolation on the square 
lattice illustrated in figure 1. Flow along occupied bonds and sites is permitted only 
along the direction of the arrows (in the forward ‘time’ direction). Bonds are present 

Figure 1. The oriented square lattice. Arrows indicate the allowed directions of flow along 
the bonds. 
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with probability pb and sites with probability p s ,  and bond percolation ( p ,  = l), site 
percolation (Pb = 1) and bond-site percolation ( p s ,  pb both variable) are considered. 

We utilise the finite-size renormalisation group technique (Nightingale 1976). The 
directed percolation problem is particularly interesting because the decay of cor- 
relations is anisotropic. Specifically, if 511 and f L  are the correlation lengths for decay in 
the flow direction and perpendicular to it, then we anticipate 

511-5: - ( P - P c ) - y " - ( P - P c ) - v , e  (1) 
as the critical percolation probability, pc ,  is approached. Here, 8 is the anisotropy 
exponent and vll and vl the correlation length exponents in the longitudinal and 
transverse directions respectively. A similar anisotropy of the correlation lengths 
occurs at a Lifshitz point (Hornreich et a1 1975), which is currently being studied using 
similar methods (Yeomans, in preparation). 

Both oriented and non-oriented percolation were first defined in the classic paper of 
Broadbent and Hammersley (1957). Series expansion results of Blease (1977a, b) and 
Monte Carlo work by KertCsz and Vicsek (1980) and Dhar and Barma (1981) yielded 
estimates for the critical percolation probabilities on several oriented two-dimensional 
lattices, and indicated that directed and ordinary percolation are in different uni- 
versality classes. Obukhov (1980) argued that d = 5 dimensions provided the upper 
critical dimension for the directed percolation problem (as opposed to d = 6 for 
ordinary percolation). He derived exponents to leading order in E for 5 - E dimensions. 
Recently Cardy and Sugar (1980) have shown that there is an exact mapping between 
the directed percolation problem and Reggeon field theory which models the creation, 
propagation and destruction of a cascade of elementary particles (Grassberger and de la 
Torre 1979). 

Within the finite-size renormalisation group technique (Nightingale 1976, dos 
Santos and Sneddon 1980), a recursion relation is defined by considering the behaviour 
of the correlation length under a change in length scale. Thus if &, is the correlation 
length of a strip of infinite length and of width n sites which is calculated by a transfer 
matrix technique, one defines the renormalised probability, p ' ,  via the relation 

tn+l(p')=[(n + l ) l n l S n ( ~ ) *  (2) 

m + l ( P : ) = [ ( n  + l ) lnl5n(P3,  (3) 

The fixed point, p,*,  and critical exponent, vn, are then defined as usual by 

Vn In ( n l n  + 1) (4) 

For It + 0;) one can show that p z  + p c  and vn + v (dos Santos and Sneddon 1980). Note 
that (3) is equivalent to the assumption of finite-size scaling (Fisher 1972). Precise and 
apparently accurate values for critical exponents and transition parameters have been 
obtained using the finite-size renormalisation group for both thermal (Nightingale 
1976, Sneddon 1978, dos Santos and Sneddon 1980, Rhcz 1980, Blote et a1 1980, 
Kinzel and Schick 198 1) and geometrical (Derrida 1981, Derrida and Vannimenus 
1981) models. 

However, to treat the directed percolation problem, for which the correlation length 
is anisotropic, a modification of the approach is necessary. It is the transverse cor- 
relation length, el, which scales linearly with the width of the strip. However the 
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longitudinal correlation length, til, is calculated from the transfer matrix. Therefore 
from (1) and (3) we obtain 

This recursion relation contains two unknown parameters p,* and 0,. These may be 
calculated by a comparison of strips of three successive widths, say n - 1, n and n + 1. 

The transfer matrix technique used to calculate the correlation length in the 
oriented percolation problem is analogous to that used to treat ordinary percolation by 
Derrida and Vannimenus (1981). The matrix elements ($NITnl$N+l) of the transfer 
matrix T, are defined as the probability that row N + 1 of the lattice is in a configuration 
/$N+l) given that row N is in a configuration where describes whether or not 
the sites in row N are connected to row 1. A simplifying feature of directed percolation 
(compared with ordinary percolation) is that it is unnecessary to consider paths between 
sites in rows N and N + 1 which proceed via earlier rows. The correlation length, tN, is 
then given by 

(6) 

(Camp and Fisher 1972) where A?) ,  A ? )  are the two largest eigenvalues of T,. For the 
percolation problem, as a consequence of the normalisation of the probability, one has 
A t '  = 1 and the contribution of the corresponding eigenvector can be factored out of 
the transfer matrix. The problem is therefore reduced to calculating a single largest 
eigenvalue, A ?). 

To calculate A:"' a direct iteration technique has been used. Sparse transfer 
matrices (Domb 1949), which at each step add a single site, prove convenient in 
speeding the iterations and easing computer storage problems. If the lattice is built up 
by continued application of a sparse transfer matrix, helical boundary conditions result 
as illustrated in figure 2. We have studied both helical and free boundary conditions: in 
the latter case a different sparse matrix must be used to add the edge sites, which have a 
different connectivity from the sites in the bulk of the strip. For a strip of width n, the 
sparse transfer matrix is of size 2" x 2" and contains 2"+' non-zero elements. The 
largest strips considered were of width n = 15; the calculation took approximately 45 
minutes on an IBM 370/168 machine. 

5~ = l / ( ln  A?'/ln Ay)) 

Figure 2. Construction of a strip of width n with helical boundary conditions using a sparse 
transfer matrix. Each iteration of the matrix adds a site n' together with the two bonds 
shown by bold lines and sums over the states of site 1. 
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Table 1 shows results for the site problem on the directed square lattice from 
calculations on strips of width n - 1, n and n + 1 with free boundary conditions. Values 
are given for p : ,  the fixed point of the recursion relations, and the corresponding 
anisotropy and transverse correlation length exponents, On and vln, obtained for values 
of n from 4 to 14. Extrapolations calculated from each successive pair of results, 
assuming that the results tend to a limiting value linearly with l / n ,  are also listed. The 
extrapolations suggest best values p c  (site) = 0.7058f 1, 6 = 1.581 f 1, vl = 1.094k 1 
where the errors refer to the final significant figure. Similar results were obtained for 
the bond problem and for the site-bond problem with p = p s  = pb. The extrapolated 
values of the critical percolation probability and the critical exponents are listed in 
table 2. 

Table 1. p : ,  0 and vI for directed site percolation from calculations on strips of width n - 1, 
n, n + 1 with free boundary conditions. (The extrapolations are calculated from each 
successive pair of results, assuming that the results tend to a limiting value linearly with l / n . )  

Extrapolated Extrapolated Extrapolated 
n p :  (site) values en values VI, values 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.703 78 
0.703 76 
0.704 17 
0.704 46 
0.704 68 
0.704 83 
0.704 95 
0.705 04 
0.705 10 
0.705 16 
0.705 20 

0.703 68 
0.706 22 
0.706 20 
0.706 22 
0.706 03 
0.706 03 
0.705 94 
0.705 76 
0.705 88 
0.705 72 

1.5389 
1.5387 
1.5439 
1.5483 
1.5519 
1.5549 
1.5574 
1.5596 
1.5614 
1.5629 
1.5642 

1.5379 
1.5699 
1.5747 
1.5771 
1.5789 
1.5799 
1.5816 
1.5812 
1.5809 
1.5811 

1.1313 
1.1278 
1.1230 
1.1193 
1.1162 
1.1138 
1.1119 
1.1102 
1.1089 
1.1077 
1.1067 

1.1138 
1.0990 
1.097 1 
1.0945 
1.0946 
1.0948 
1.0932 
1.0946 
1.0933 
1.0937 

Best 
extrapolated 
value 0.7058i 1 1.581 * 1 1.094*1 

We also studied the bond problem on the directed square lattice with helical 
boundary conditions. Unexpectedly the results converged linearly with l / n  3: intui- 
tively a linear dependence on l / n2 ,  as exhibited by finite systems with periodic 
boundary conditions (Barber and Fisher 1973), seems more plausible. Extrapolated 
values are shown in table 2. 

The values of p :  apparently converge very rapidly for n 3 9 ,  suggesting that the 
extrapolated values give rather accurate estimates for the critical percolation 
probabilities. An estimate of the accuracy of the extrapolated values of the critical 
exponents may be obtained by invoking universality. The values of 8 obtained in the 
four different cases are identical (to within the error bars), which is very encouraging. 
The values of vi differ in the last figure, however, suggesting that final values should be 
v,=1.098*5, 6=1 .582&1.  

Results obtained by previous authors are listed in table 2 for comparison. Our 
results are in excellent agreement with those quoted by Cardy and Sugar (1980). The 
results also agree with the series work of Blease (1977a, b) and the Monte Carlo results 
of Dhar and Barma (1981), but lie outside the error bars of the values of KertCsz and 
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Table 2. Extrapolated results for the critical percolation probability, pc ,  the anisotropy 
exponent, 8, and the transverse and longitudinal correlation length exponents vI and Y I I .  

The results of the present work are compared with those of previous work on directed 
percolation and branching Markov processes (BMP). 

Site Free 
Bond-site Free 
Bond Free 
Bond Helical 

Previous results: 
Bond, Monte Carlo" 
Bond, Monte Carlob 
Bond, series' 
BMP, seriesd 
BMP, Monte Carloe 

0.7058*1 1.581kl  
0.8228*1 1.582*1 
0.644*1 1.582*1 
0.6447*1 1.582*1 

0.632 * 4 
0.6445 * 5 
0.6446k 2 

1.572*9 
1.583 10 

1.094rt1 1.730k2 
1.095*2 1.732*3 
1.099*1 1.7393~2 
1.103*1 1.745*2 

1.65*6 

1.730*9 
1.736*1 
1.691*18 

a Kertesz and Vicsek (1980). 
Dhar and Barma (1981). 
Blease (1977). 
Brower er a1 (1978). 

e Grassberger and de la Torre (1979). 

Vicsek (1980), which were also obtained using Monte Carlo simulations. This may be a 
consequence of the difficulty of applying finite-size scaling arguments to a Monte Carlo 
simulation on a finite lattice when the decay of correlations in the system is anisotropic. 

Finally, figure 3 shows the phase boundary for site-bond percolation on the directed 
square lattice. The curve plotted is obtained by extrapolation of the results for finite 
strips. 

In conclusion, we have shown that the finite-size renormalisation group can be 
extended to treat systems with anisotropic correlation lengths. Precise estimates for the 
correlation length and anisotropy exponents and for the critical percolation prob- 
abilities have been obtained for bond, site and site-bond percolation on the oriented 
square lattice. Results obtained using helical boundary conditions were found to 
converge linearly with l / n 3 .  This is an unexpected result which deserves further 
investigation. 

0-0 
s 

Figure 3. Critical percolation probability for site-bond percolation extrapolated from 
results obtained for strips of finite width. 
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